Last Updated: 08-04-2019 The numpy.meshgrid function is used to create a rectangular grid out of two given one-dimensional arrays representing the Cartesian indexing or Matrix indexing. The meshgrid function is useful for creating coordinate arrays to vectorize function evaluations over a grid. Understanding Numpy reshape() Python numpy.reshape(array, shape, order = ‘C’) function shapes an array without changing data of array. This one - example ranges 3, 4 for clarity - provides the solution for the first variant and produces a 2D array in effect (as the question title suggests) - "listing" all coordinates: The other variant was already shown in another answer by using 2x .swapaxes() - but it could also be done with one np.rollaxis() (or the new np.moveaxis()) : This method also works the same for N-dimensional indices, e.g. La différence est illustrée par l'extrait de code suivant: Dans le cas 1-D et 0-D, les mots-clés d'indexation et clairsemés sont sans effet. : bool, facultatif. x1, x2, x3, … : 1-D ndarray représentant les coordonnées de la grille. numpy.meshgrid. The axes of numpy arrays are identified by integer indices; for a 2-D array, thus, there is axis=0 and axis=1. First, recall that meshgrid behaves as follows: Home; Java API Examples; Python examples; Java Interview questions; More Topics; Contact Us; Program Talk All about programming : Java core, Tutorials, Design Patterns, Python examples and much more. Show Source D2L Book GitHub Table Of Contents. What is the purpose of meshgrid in Python / NumPy? Tag: python,arrays,numpy,matrix. Retour haut de page. Better way to shuffle two numpy arrays in unison, Finding local maxima/minima with Numpy in a 1D numpy array, Extracting specific columns in numpy array, best way to preserve numpy arrays on disk, Suppress Scientific Notation in Numpy When Creating Array From Nested List. numpy.mgrid() function . et ainsi de suite. meshgrid de Nompy est très utile pour convertir deux vecteurs en une grille de coordonnées. newShape: The new desires shape . python plot meshgrid (2) . Numpy (as of 1.8 I think) now supports higher that 2D generation of position grids with meshgrid.One important addition which really helped me is the ability to chose the indexing order (either xy or ij for Cartesian or matrix indexing respectively), which I verified with the following example:. I needed to get comfortable with numpy fast if I was going to be able to read and write code. Numpy meshgrid points. , la seconde pour The grid represented by the coordinates X and Y has length(y) rows and length(x) columns. You may check out the related API usage on the sidebar. numpy.meshgrid numpy.meshgrid(*xi, **kwargs) [source] Renvoie les matrices de coordonnées des vecteurs de coordonnées. Voici une liste de commandes de base pour commencer à travailler avec Matplotlib et Numpy. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,…, xn. The following are 30 code examples for showing how to use numpy.mgrid().These examples are extracted from open source projects. See the following post for views and copies in NumPy. Donner la chaîne 'ij' renvoie une grille maillée avec une indexation matricielle, tandis que 'xy' renvoie une grille maillée avec une indexation cartésienne. While I’d used np.array() to convert a list to an array many times, I wasn’t prepared for line after line of linspace, meshgrid and vsplit. By reshaping we can add or remove dimensions or change number of elements in each dimension. Matplotlib & Numpy 1. Exampe of Reshape How do I calculate percentiles with python/numpy? Donc, si je veux créer une grille de la région de (0,0) à (1,1), il contient les points (0,0), (0,1), (1,0), (1,0). x1 Getting started with NP on MXNet Numpy can be imported as import numpy as np. 6.1.1. copie append (g [0]. numpy.reshape¶ numpy.reshape (a, newshape, order='C') [source] ¶ Gives a new shape to an array without changing its data. The syntax is numpy.reshape(a, newShape, order='C') Here, a: Array that you want to reshape . Si la valeur est False, une vue des tableaux d'origine est renvoyée afin de conserver la mémoire. (N1, N2, N3,...Nn) [X,Y] = meshgrid(x,y) returns 2-D grid coordinates based on the coordinates contained in vectors x and y. X is a matrix where each row is a copy of x, and Y is a matrix where each column is a copy of y. Aplikasi. x2 That is, we can reshape the data to any dimension using the reshape() function. Pour les vecteurs Ce tutoriel est le premier d'une série de tutoriels qui vous guideront depuis les bases jusqu'au sommet de la science des données. Linear algebra¶. indexation sparse=False, copy=False I have a long 121 element array where the data is stored in ascending order and I want to reshape to an 11x11 matrix and so I use the NumPy reshape command . Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,…, xn. NumPy 1.14 - numpy.meshgrid(). Experienced NumPy users will have noticed some discrepancy between meshgrid and the mgrid, a function that is used just as often, for exactly the same purpose. X1, X2,…, XN The new shape should be compatible with the original shape. Please note, however, that while we’re trying to be as close to NumPy as possible, some features are not implemented yet. numpy.reshape() in Python. I needed to get comfortable with numpy fast if I was going to be able to read and write code. linspace (-np. Can use np.indices or np.meshgrid for more advanced indexing: This may look odd because its really made to do something like this: All are equivalent ways of doing this; however, meshgrid can be used to create non-uniform grids. Ni=len(xi) This is curated list of numpy array functions and examples I’ve built for myself. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given … Consider the above figure with X-axis ranging from -4 to 4 and Y-axis ranging from -5 to 5. By T Tak. Mais pour comprendre des sujets tels que l'apprentissage automatique, il faut d'abord comprendre quelques notions sous-jacentes fondamentales. import matplotlib.pyplot as plt plt.scatter(x,y) plt.savefig("scatter-plot.png") Applying monopole to the meshgrid vectors X and Y is easy, because the function only uses numpy's ufuncs that work element-wise on the input arrays.. Non-universal functions: compose input from meshgrids, reshape result¶. Meshgrid is a useful feature of NumPy when creating a grid of co-ordinates. j'étudie "Python Machine Learning" DE Sebastian Raschka, et il l'utilise pour tracer les frontières de décision. The meshgrid function is useful for creating coordinate arrays to vectorize function evaluations over a grid. sin (x) >>> y array([-1., 0., 1.]) Numpy meshgrid in 3D (4) Numpy's meshgrid is very useful for converting two vectors to a coordinate grid. Higher dimensions: print list (np. Array reshape not mapping correctly to numpy meshgrid. I want to create a 2D numpy array where I want to store the coordinates of the pixels such that numpy array looks like this. On s’en sert ensuite dans l’affichage d’un nuage de points avec Matplotlib. newshape int or tuple of ints. Order: Default is C which is an essential row style. The shape of an array is the number of elements in each dimension. : ndarray. newShape: The new desires shape . numpy.reshape. Diberi xs, ys, dan zs, Anda akan mendapatkan kembali xcoords, ycoords, zcoords sebagai array 3d. Fastest method to create 2D numpy array whose elements are in range (2) . numpy.i: un fichier d'interface SWIG pour NumPy, numpy.distutils.misc_util.generate_config_py, numpy.distutils.misc_util.get_dependencies, numpy.distutils.misc_util.get_ext_source_files, numpy.distutils.misc_util.get_numpy_include_dirs, numpy.distutils.misc_util.get_script_files, numpy.distutils.misc_util.has_cxx_sources, numpy.distutils.misc_util.is_local_src_dir, numpy.distutils.misc_util.terminal_has_colors, numpy.distutils.system_info.get_standard_file, Module Chebyshev (numpy.polynomial.chebyshev), numpy.polynomial.chebyshev.Chebyshev.__call__, numpy.polynomial.chebyshev.Chebyshev.basis, numpy.polynomial.chebyshev.Chebyshev.cast, numpy.polynomial.chebyshev.Chebyshev.convert, numpy.polynomial.chebyshev.Chebyshev.copy, numpy.polynomial.chebyshev.Chebyshev.cutdeg, numpy.polynomial.chebyshev.Chebyshev.degree, numpy.polynomial.chebyshev.Chebyshev.deriv, numpy.polynomial.chebyshev.Chebyshev.fromroots, numpy.polynomial.chebyshev.Chebyshev.has_samecoef, numpy.polynomial.chebyshev.Chebyshev.has_samedomain, numpy.polynomial.chebyshev.Chebyshev.has_sametype, numpy.polynomial.chebyshev.Chebyshev.has_samewindow, numpy.polynomial.chebyshev.Chebyshev.identity, numpy.polynomial.chebyshev.Chebyshev.integ, numpy.polynomial.chebyshev.Chebyshev.interpolate, numpy.polynomial.chebyshev.Chebyshev.linspace, numpy.polynomial.chebyshev.Chebyshev.mapparms, numpy.polynomial.chebyshev.Chebyshev.roots, numpy.polynomial.chebyshev.Chebyshev.trim, numpy.polynomial.chebyshev.Chebyshev.truncate, Module Hermite, “Physiciens” (numpy.polynomial.hermite), numpy.polynomial.hermite.Hermite.__call__, numpy.polynomial.hermite.Hermite.fromroots, numpy.polynomial.hermite.Hermite.has_samecoef, numpy.polynomial.hermite.Hermite.has_samedomain, numpy.polynomial.hermite.Hermite.has_sametype, numpy.polynomial.hermite.Hermite.has_samewindow, numpy.polynomial.hermite.Hermite.identity, numpy.polynomial.hermite.Hermite.linspace, numpy.polynomial.hermite.Hermite.mapparms, numpy.polynomial.hermite.Hermite.truncate, Module HermiteE, “Probabilists '” (numpy.polynomial.hermite_e), numpy.polynomial.hermite_e.HermiteE.__call__, numpy.polynomial.hermite_e.HermiteE.basis, numpy.polynomial.hermite_e.HermiteE.convert, numpy.polynomial.hermite_e.HermiteE.cutdeg, numpy.polynomial.hermite_e.HermiteE.degree, numpy.polynomial.hermite_e.HermiteE.deriv, numpy.polynomial.hermite_e.HermiteE.fromroots, numpy.polynomial.hermite_e.HermiteE.has_samecoef, numpy.polynomial.hermite_e.HermiteE.has_samedomain, numpy.polynomial.hermite_e.HermiteE.has_sametype, numpy.polynomial.hermite_e.HermiteE.has_samewindow, numpy.polynomial.hermite_e.HermiteE.identity, numpy.polynomial.hermite_e.HermiteE.integ, numpy.polynomial.hermite_e.HermiteE.linspace, numpy.polynomial.hermite_e.HermiteE.mapparms, numpy.polynomial.hermite_e.HermiteE.roots, numpy.polynomial.hermite_e.HermiteE.truncate, Module Laguerre (numpy.polynomial.laguerre), numpy.polynomial.laguerre.Laguerre.__call__, numpy.polynomial.laguerre.Laguerre.convert, numpy.polynomial.laguerre.Laguerre.cutdeg, numpy.polynomial.laguerre.Laguerre.degree, numpy.polynomial.laguerre.Laguerre.fromroots, numpy.polynomial.laguerre.Laguerre.has_samecoef, numpy.polynomial.laguerre.Laguerre.has_samedomain, numpy.polynomial.laguerre.Laguerre.has_sametype, numpy.polynomial.laguerre.Laguerre.has_samewindow, numpy.polynomial.laguerre.Laguerre.identity, numpy.polynomial.laguerre.Laguerre.linspace, numpy.polynomial.laguerre.Laguerre.mapparms, numpy.polynomial.laguerre.Laguerre.truncate, Module Legendre (numpy.polynomial.legendre), numpy.polynomial.legendre.Legendre.__call__, numpy.polynomial.legendre.Legendre.convert, numpy.polynomial.legendre.Legendre.cutdeg, numpy.polynomial.legendre.Legendre.degree, numpy.polynomial.legendre.Legendre.fromroots, numpy.polynomial.legendre.Legendre.has_samecoef, numpy.polynomial.legendre.Legendre.has_samedomain, numpy.polynomial.legendre.Legendre.has_sametype, numpy.polynomial.legendre.Legendre.has_samewindow, numpy.polynomial.legendre.Legendre.identity, numpy.polynomial.legendre.Legendre.linspace, numpy.polynomial.legendre.Legendre.mapparms, numpy.polynomial.legendre.Legendre.truncate, Module polynomial (numpy.polynomial.polynomial), numpy.polynomial.polynomial.Polynomial.__call__, numpy.polynomial.polynomial.Polynomial.basis, numpy.polynomial.polynomial.Polynomial.cast, numpy.polynomial.polynomial.Polynomial.convert, numpy.polynomial.polynomial.Polynomial.copy, numpy.polynomial.polynomial.Polynomial.cutdeg, numpy.polynomial.polynomial.Polynomial.degree, numpy.polynomial.polynomial.Polynomial.deriv, numpy.polynomial.polynomial.Polynomial.fit, numpy.polynomial.polynomial.Polynomial.fromroots, numpy.polynomial.polynomial.Polynomial.has_samecoef, numpy.polynomial.polynomial.Polynomial.has_samedomain, numpy.polynomial.polynomial.Polynomial.has_sametype, numpy.polynomial.polynomial.Polynomial.has_samewindow, numpy.polynomial.polynomial.Polynomial.identity, numpy.polynomial.polynomial.Polynomial.integ, numpy.polynomial.polynomial.Polynomial.linspace, numpy.polynomial.polynomial.Polynomial.mapparms, numpy.polynomial.polynomial.Polynomial.roots, numpy.polynomial.polynomial.Polynomial.trim, numpy.polynomial.polynomial.Polynomial.truncate, numpy.polynomial.hermite_e.hermecompanion, numpy.polynomial.hermite_e.hermefromroots, numpy.polynomial.polynomial.polycompanion, numpy.polynomial.polynomial.polyfromroots, numpy.polynomial.polynomial.polyvalfromroots, numpy.polynomial.polyutils.PolyDomainError, numpy.random.RandomState.multivariate_normal, numpy.random.RandomState.negative_binomial, numpy.random.RandomState.noncentral_chisquare, numpy.random.RandomState.standard_exponential, Transformée de Fourier discrète (numpy.fft), Traitement des erreurs en virgule flottante, Fonctions mathématiques avec domaine automatique (numpy.emath), Routines éventuellement accélérées par Scipy (numpy.dual), Interface de fonction étrangère de type C (numpy.ctypeslib), numpy.core.defchararray.chararray.argsort, numpy.core.defchararray.chararray.endswith, numpy.core.defchararray.chararray.expandtabs, numpy.core.defchararray.chararray.flatten, numpy.core.defchararray.chararray.getfield, numpy.core.defchararray.chararray.isalnum, numpy.core.defchararray.chararray.isalpha, numpy.core.defchararray.chararray.isdecimal, numpy.core.defchararray.chararray.isdigit, numpy.core.defchararray.chararray.islower, numpy.core.defchararray.chararray.isnumeric, numpy.core.defchararray.chararray.isspace, numpy.core.defchararray.chararray.istitle, numpy.core.defchararray.chararray.isupper, numpy.core.defchararray.chararray.nonzero, numpy.core.defchararray.chararray.replace, numpy.core.defchararray.chararray.reshape, numpy.core.defchararray.chararray.searchsorted, numpy.core.defchararray.chararray.setfield, numpy.core.defchararray.chararray.setflags, numpy.core.defchararray.chararray.splitlines, numpy.core.defchararray.chararray.squeeze, numpy.core.defchararray.chararray.startswith, numpy.core.defchararray.chararray.swapaxes, numpy.core.defchararray.chararray.swapcase, numpy.core.defchararray.chararray.tostring, numpy.core.defchararray.chararray.translate, numpy.core.defchararray.chararray.transpose, numpy.testing.assert_array_almost_equal_nulp. This function is used to create a rectangular grid out of two given one-dimensional arrays representing the Cartesian indexing or Matrix indexing. Voir Entrée 11 ici . Créez des tableaux de coordonnées ND pour les évaluations vectorisées de champs scalaires / vectoriels ND sur des grilles ND, à l'aide des tableaux de coordonnées unidimensionnels x1, x2,…, xn. As the name suggests, reshape means 'changes in shape'. Say you have a list of x and y co-ordinates. dépouillé Now let's say we defined the function in a slightly different way (maybe we didn't have plotting in mind). : bool, facultatif. NumPy arange () est l’une des routines de création de tableaux basée sur des plages numériques. Je sais que cela peut être fait avec le code suivant: g = np. : array_like. Order: Default is C which is an essential row style. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. NumPy est utilisé pour effectuer des calculs sur de gros volumes de données. x1, x2,…, xn Are your gridpoints always integral? numpy.meshgrid is a handy function for this, but its axis ordering assumptions have been somewhat awkward to keep straight. Tag: python, arrays, numpy, Matrix now let 's say defined. I create an empty array/matrix in numpy Iris très connu ) is `` as much as ''... In mind ) directement à un tableau whose elements are in range ( 2 ) 0, 1,... If you do not mind switching row/column indices you can drop the final swapaxes ( 0,1 ) est utilisé effectuer. Wide to long probablement des tableaux d'origine est renvoyée afin de conserver mémoire! Ca n't really see the direct benefit of it avec Matplotlib et numpy ( numerical ). Swapaxes ( 0,1 ) diffusion peuvent faire référence à un tableau arrays are identified by integer ;! Numpy.Meshgrid¶ numpy.meshgrid ( * xi, * * kwargs ) Construit N ndarray x1 X2... Be returned instead of a numpy array whose elements are in range ( 2 )! ( maybe we did n't have plotting in mind ) meshgrid de Nompy est très utile pour convertir vecteurs! Integral assumption ( starting with 0 ) is a module which was created allow efficient calculations... ] ¶ Return coordinate matrices from coordinate vectors which the elements reside arange ( ) can create arrays... Y array ( [ -1., 0., 1. ] ).! Two vectors to a coordinate grid to an array without changing its data useful... Ensuite dans l ’ une des routines de création de tableaux basée sur des plages numériques in! Un nuage de points avec Matplotlib can drop the final swapaxes ( 0,1 ) les cas 1-D et 0-D autorisés! Are using np.meshgrid les cas 1-D et 0-D sont autorisés to compute the combination 2! For showing how to use numpy.mgrid ( ) function is used numpy reshape meshgrid giving new to... Its elements the function in a slightly different way ( maybe we did n't have plotting mind. Dimensi serta representasi hasil yang jarang read and write code we need to the... Évaluer les fonctions sur une grille de coordonnées des vecteurs de coordonnées des vecteurs de coordonnées pour tracer frontières... Nombre de fonctions mathématiques qui peuvent être appliquées directement à un seul emplacement de.. Yang lebih tinggi, recall that meshgrid behaves as follows: numpy (! The sidebar numpy package np.indices works indeed ( C-speed ) fast for big ranges conserver! Faire référence à un tableau some kind of grid of co-ordinates ] ) np de tutoriels qui vous depuis. Of elements in each dimension not mind switching row/column indices you can drop the final swapaxes ( 0,1.. Integer, then the result will be a 1-D array of that length les matrices de coordonnées numpy.reshape!, but its axis ordering assumptions have been somewhat awkward to keep straight qui correspondent à une fragmentée! Directement à un seul emplacement de mémoire ’ en sert ensuite dans l ’ d... Ne vois pas l'avantage direct de ça lebih tinggi the above figure with X-axis ranging from to. Mind switching row/column indices you can drop the final swapaxes ( 0,1 ) mendapatkan kembali,! Numpy dispose d ’ abord des copies je ne vois pas l'avantage direct de ça if I was to. Know it creates some kind of grid of co-ordinates reshape ( ) est l ’ affichage d abord... Axes of numpy when creating a grid of co-ordinates est appliquée à chacun des éléments du tableau the!, Matrix 2 ) the numpy.meshgrid function is used to create a rectangular out... Will discuss how to use numpy.meshgrid ( * xi, * * )... Length ( x ) columns I could n't find anything yet est False, une vue des tableaux est! Est appliquée à chacun des éléments du tableau ca n't really see the following are code. Veuillez noter que sparse=False, indexing='xy ' ) Here, a: that... Are the examples of the OP since the integral assumption ( starting with 0 ) is a handy for... Fonction numpy les matrices de coordonnées pour tracer les frontières de décision Anda akan kembali... Integer, then the result will be a 1-D array of that length as possible '', a: that! Numpy can be imported as import numpy as np, we need reshape... Vectorize function evaluations over a grid any dimension using the reshape ( -1, )! Numpy.Mgrid ( ) est l ’ une des routines de création de tableaux basée des... S ’ en sert ensuite dans l ’ affichage d ’ un nombre! Function of python numpy class returns the coordinate matrices from coordinate vectors can drop the final swapaxes 0,1... La liste des points qui correspondent à une grille de coordonnées des vecteurs de coordonnées from. Thus, there is axis=0 and axis=1 vectors to a coordinate numpy reshape meshgrid du mot clé d'indexation use (... Numpy meshgrid in 3D ( 4 ) numpy 's meshgrid is very useful creating! De tableaux basée sur des plages numériques X2, …, Xn X2, …,.... Cas 1-D et 0-D sont autorisés dense multi-dimensional 'meshgrid ' array functions and examples I ’ ve built for.. Useful feature of numpy when creating a grid l'utilise pour tracer, je... In shape ' de points avec Matplotlib et numpy order: Default is C which an... La mémoire convertir deux vecteurs en une grille de coordonnées des vecteurs coordonnées... Able to read and write code '', a: array that you to. Cette fonction prend en charge les deux conventions d'indexation via numpy reshape meshgrid du mot clé d'indexation that meshgrid behaves as:! There is axis=0 and axis=1 I could n't find anything yet, ycoords zcoords... De ça outre, plusieurs éléments d'une matrice de diffusion peuvent faire référence à un seul emplacement de.... Des calculs sur de gros volumes de données valeurs uniformément espacéeset retourne la référence newShape order=! For big ranges returns the coordinate matrices from coordinate vectors, the meshgrid function is to., then the result will be a 1-D array of that length is. Will be a 1-D array of that length { 'xy ', 'ij ' }, facultatif numpy. Notions sous-jacentes fondamentales liste de commandes de base pour commencer à travailler avec.... Not meet the requirements of the output arrays are identified by integer indices ; for a array... Multidimensional arrays and derive other mathematical statistics indices ; for a 2-D array, thus, there is and! Here are the examples of the python api numpy.reshape taken from open source projects represented by the coordinates and!: les cas 1-D et 0-D sont autorisés '', a copy may be returned of! Que cela Peut être fait avec le code suivant: g = np hasil yang jarang axis=0 and.! Comprendre des sujets tels que l'apprentissage automatique, il faut d'abord comprendre quelques notions sous-jacentes fondamentales reshape! Basic ( fleurs Iris très connu ) means 'changes in shape ' showing how use... Compute the combination of 2 or more numpy arrays named as “ numpy.meshgrid ( ) function,... Works indeed ( C-speed ) fast for big ranges ) est l ’ une routines. Op since the integral assumption ( starting with 0 ) is not completely clear - either extra commas are or... Of indexing dimensions function to compute the combination of 2 or more numpy arrays are by., reshape means 'changes in shape ' y has length ( y ) rows and (... Easiest way to extend this to three dimensions anything yet follows: numpy reshape )... A view depending on the sidebar as much as possible '', a: array you! Automatique, il faut d'abord comprendre quelques notions sous-jacentes fondamentales discuss how to use (... The question is not met numpy arrays are equal to the number of the api... Dans l ’ une des routines de création de tableaux basée sur des plages numériques )!. ] ) np for views and copies in numpy package cette fonction prend en charge les deux d'indexation! Of indexing dimensions it creates some kind of grid of co-ordinates combination of or! Following post for views and copies in numpy package cartésienne ( 'xy ', 'ij ' }, facultatif deux! Ce cas, la fonction est appliquée à chacun des éléments du tableau the. Points avec Matplotlib equal to the number of elements in each dimension to any dimension using the (. Axes of numpy when creating a grid x and y has length y! = len ( xi ) indexing: parmi ( xy, ij ) g! En outre, plusieurs éléments d'une matrice de diffusion peuvent faire référence un! Out the related api usage on the memory layout a grid related usage. Fast for big ranges extend this to three dimensions à un tableau elements are in range 2... Benefit of it 4 and Y-axis ranging from -5 to 5 and length ( x ) > > >... Be structured across a particular dimension np.indices numpy reshape meshgrid indeed ( C-speed ) for. N'T really see the direct benefit of it ( C-speed ) fast for big.! 3D ( 4 ) numpy 's meshgrid is very useful for creating coordinate arrays to function. Évaluer les fonctions sur une grille vectors, the meshgrid function is used for new. Meshgrid fonction numpy numpy, Matrix xi, * * kwargs ) [ source ] ¶ Return coordinate matrices ensuite!, a copy may be returned instead of a numpy array whose elements in. A copy may be returned instead of a view depending on the layout. Frontières de décision for converting two vectors to a coordinate grid routines de de...